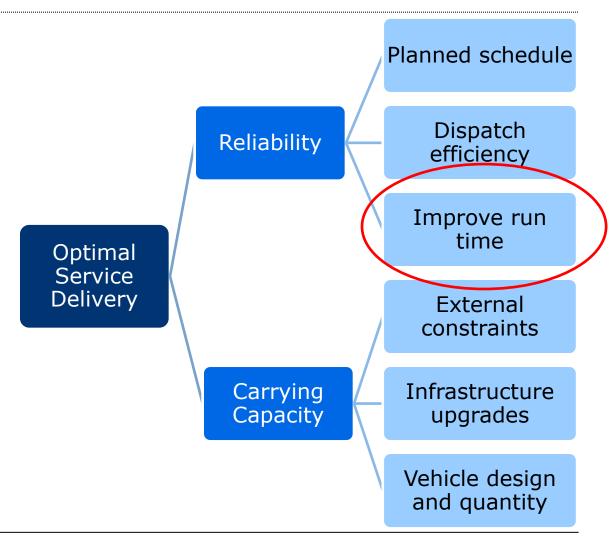

Transit Signal Priority (TSP)

Fiscal & Management Control Board

October 23, 2017

Overview


- > Service Delivery Context
- > About TSP
- ➤ MBTA TSP Strategy
- > TSP Signal Pilot Results
- Proposed TSP Corridor
 Pilots
- Proposed TSP Roll Out Strategy

TSP in Service Delivery Context

Optimal service delivery means trains/buses arrive within their scheduled headway, and with enough space for all passengers to board.

TSP: A Tactical Tool

Service Changes

- Routes alignment and stop spacing
- Frequency and span changes

Partnerships with municipalities

- Bus lanes
- Signal priority and queue jumps

Private sector partnerships

Operational Changes

- All door boarding and faster fare collection
- Improved dispatching tools and procedures

Capital Projects

- Fleet facilities
- Additional buses

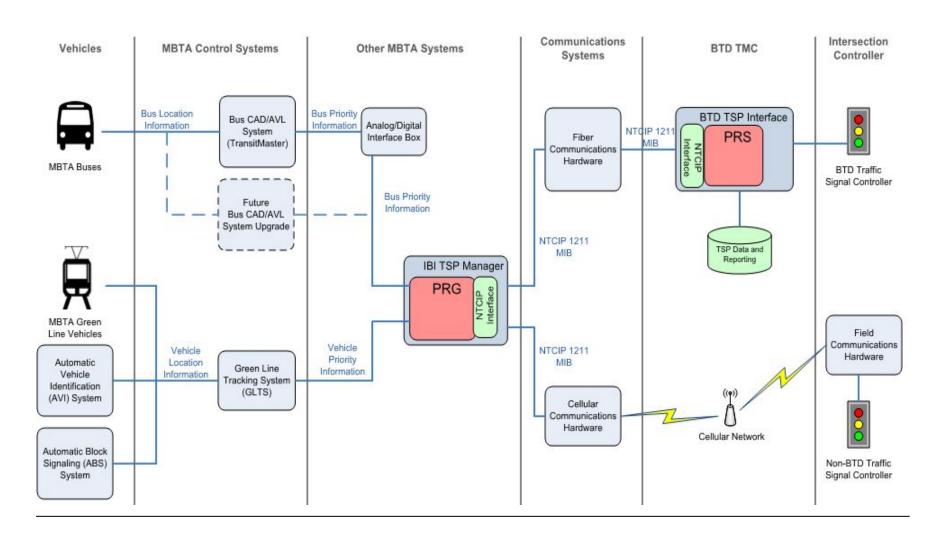
14 HEATH STREET

About TSP

Image Source: @milesontheMBTA

What is TSP?

TSP uses technology to reduce dwell time for transit vehicles operating in mixed traffic by extending greenlight-time, or shortening red-light-time.


TSP helps:

- > Improve reliability
- > Reduce travel time
- > Increase network capacity
- Enhance OTP

MBTA TSP Communications Scheme

MBTA Requirements for TSP Implementation

- Municipal partnership
- Availability of green/red-light-time to "borrow"
- Modern traffic control device with space for additional hardware
- Far side or no stop at intersection
- Applicable to bus and light rail (surface)

MBTA TSP Pilot Strategy

2015 2016 2017 2018 2019

Develop TSP software and pilot on individual signals

Pilot TSP on corridors

Roll out to high ridership corridors

Municipal partnership has been continuously cultivated, and TSP implementation will continue with city/town support.

TSP Signal Pilot Goals

- Develop software to connect light rail, buses, and municipal signals
- Develop protocols to send and receive TSP requests
- Create a scalable, transferable, and feasible implementation process
- Successfully give priority to MBTA vehicles in the field

TSP Signal Pilot Summary

- > Eight signals at six intersections in three municipalities
- > Two modes: bus and light rail; three Green Line branches
- Varying data collection time periods 5 to 9 days

Signal	Arterial	Mode	City/Town	Route or Branch
Brookline St. (IB/OB)	Massachusetts Ave.	Bus	Cambridge	1, CT1
Carlton St. (IB)	Beacon St.	Light Rail	Brookline	C Branch
Evans Way (IB/OB)	Huntington Ave.	Light Rail	Boston	E Branch
Longwood Ave. (IB)	Huntington Ave.	Light Rail	Boston	E Branch
Saint Mary's St. (OB)	Commonwealth Ave.	Light Rail	Boston	B Branch
Silber Way (IB)	Commonwealth Ave.	Light Rail	Boston	B branch

Signal Pilot Results – Green Line B & E Branches

Results from 9 days of data from 5 signals at AM peak:

- Priority was granted 390 times
- Green-light-time extended by 14 seconds (average)
- Red-light-time reduced by 8 seconds (average)
- No demonstrable negative effect to general traffic
- Operational since May 2017

Signal Pilot Results – Green Line C Branch

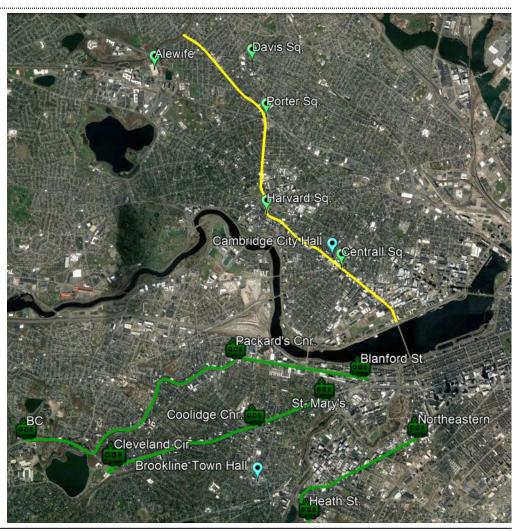
Results from 5 days of data from 1 signal at AM peak:

- Priority was granted 83 times
- Green-light-time extended by 10 seconds (average)
- Red-light-time reduced by 6 seconds (average)
- No demonstrable negative effect to general traffic
- Operational since June 2017

Signal Pilot Results – Bus Routes 1 & CT1 (Video)

Signal Pilot Results – Lessons Learned

- TSP moves buses and train through signals faster.
- Impact on customers is difficult to measure at the signal-level. A corridor approach is recommended.
- Success depends on fast processing time, municipal support, and internal resources.

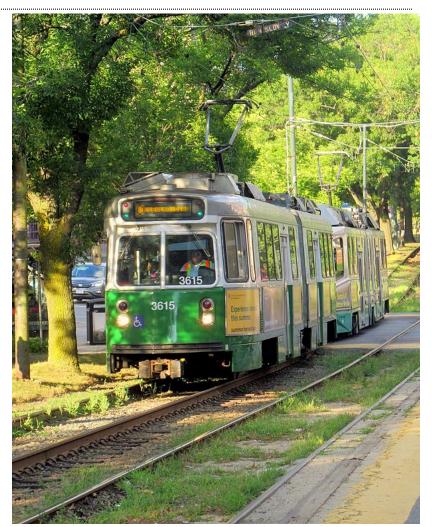


Four TSP Corridor Pilots Proposed

- Beacon Street in Brookline
- Commonwealth Avenue in Boston
- Huntington Avenue in Boston
- Massachusetts Avenue in Cambridge

Proposed Green Line Pilot Corridors

Beacon Street:


▶ 9 additional signals serving the Green Line C branch

Commonwealth Avenue:

➤ 20 additional signals serving the Green Line B branch

Huntington Avenue:

➤ 10 additional signals serving the Green Line E branch

Proposed Bus Pilot Corridor

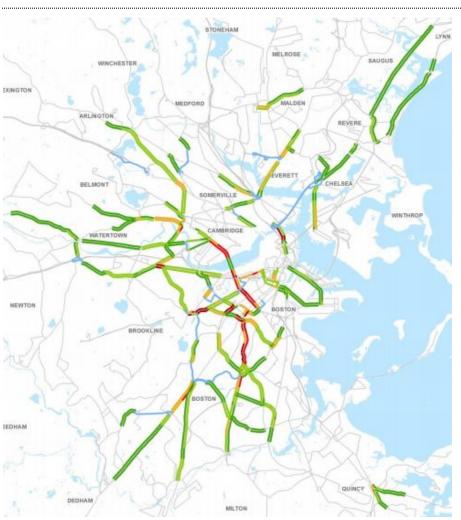
Massachusetts Avenue:

- ➤ 50 additional signals between the Boston and Arlington borders in Cambridge.
- Serving segments of bus routes:1, CT1, 47, 64, 68, 69, 70, 70A,71, 72, 73, 74, 75, 77, 77A, 78,83, 86, 96

Estimated Cost for Proposed Corridor Pilots

City or Town	Pilot Corridor	# Signals
Boston	Commonwealth Avenue	20
Boston	Huntington Avenue	10
Brookline	Beacon Street	9
Cambridge	Massachusetts Avenue	50
		89

> Estimated pilot cost: \$1.125 million, or \$12,640 per signal


Post-Pilot TSP Roll Out Strategy

- Focus on highridership, high-delay corridors
- 2. "Piggyback" on other traffic signal projects to add TSP
- 3. Emphasis on municipalities eager to partner
- Concentrate on dedicated bus lane corridor candidates

Roll Out: High Ridership & High Delay TSP Corridors

2016 CTPS study of highridership bus corridors with high rates of delay.


- Roads identified in 20 communities serving dozens of MBTA bus routes.
- ➤ All Key Bus Routes operate on parts of these corridors.

Roll Out: Piggybacking on Existing Projects

<u>Case Study</u>: Blue Hill Ave. & Warren St. Traffic Signal Improvement Project

- ➤ Joint Highway/BTD initiative to rebuild 16 intersections, including new traffic signals by 2019
- MBTA is working to ensure that TSP is included in the project during design.
- Touching on bus routes 14, 19, 23, 28, 29, 44

